
Knowledge Acquisition for the Onboard
Planner of an Autonomous Spacecraft

Benjamin D. Sxnithl and
Karma Rajan2 al~d
Nicola Muscettola2

* Jet I)ropulsion Laboratory
California Institute of Technology

4800 Oak C;rove l)rive h4/S 525-3660
Pasadena, CA !31 109-8099

s[llitl~(laig.j r)l.llasa. gov
2 NASA Ames Research t3enter

Mail Stop 269-2
Moffett Field, CA 94o35

{kanna,nlus}@ptolenly .arc.rrasa.gov

Abstract. Deep Space Oue (1)S1) will be the first spacecraft to he con-
trolled by an autonomous closed loop systenl potentially capable of car-
rying out a complete mission with minimal conlrnanding from Earth.
A major component of the autonomous flight software is an onboard
planner/scheduler. Based on generative planning and temporal reason-
ing technologies, the planner/scheduler transforms abstract goals into
detailed tasks to be executed within resource and time limits. This pa-
per discusses the knowledge acquisition issues involved in trausitioning
this novel technology into spacecraft flight software, developing the plan-
ner in the context of a large software project ancl completing the work
under a compressed development schedule. Our experience shows that
the planning framework used is adequate to address the challenges of
DSl and future autonomous spacecraft systems, and it points to a series
of open technological challenges in developing met}loclologies and tools
for knowledge acquisition and validation.

1 Introduction

The future of the space prograln calls for ambitious missions of exploration
ancl scientific discovery. Searching for life orl .Mars, Europa and elsewhere in
the solar system and beyond will require the solution of several challenging
technical and orgarlizatiorlal problelm. A central orle is tl)e irll~)letllelltatiotl of
increasingly capable and autorlonlous cotltrol systems to ensure both mission
accomplishment and mission safety [17, 6, 15]. \Vithout these systems missions
will have to be rutl with the current, traditional approach. This relies on frequent
comlnunication with F.alth and tealils of hlllllail experts guiding step Ly step
a Inission through its tasks alld analyziI1g arid rcactiIlg to tile occurrence of
malfunctions. The cost and logistics difficulties of this ap~)roactl, however, are so

Iligll that it cannot bc reasonal)ly carried ovLIr to tile cxIJcctcd growth of missions
a n d ~tlissiori capahilitics. Autotlollly tecll~lology is arl arlswer to tllcsc problcIns.

The Renlote Agmlt (RA) [12, 13] will be the first artificial intellige~lce-basecl

autonomy architecture to reside in tllc flight processor of a spacecraft and con-
trol it for 6 days without ground itlterverltion. Tile Inission on which RA v,ill fly
is Deep Space Orle (DS1), the first clec~)-s~)ace missiorl of N.4S.A’S New Millen-
nium Project. RA achieves its high level of autorloluy I)y usirlg all arcllitectur-e
with three colnponellts: an i~ltegrated planning and scheduling systeln (PS) that
generates sequences of actions (plans) frol[l higll-le~’el goals, a illtel]igent execu-
tive (EXEC) that carries out those actions alld can respo~ld to execution tinle
anomalies, and a Model-basecl Identificatioll and Recovery system (MIR) that
identifies faults and suggests repair strategies. Each module covers a different
function in the architecture auct uses a different computational approach One
characteristic however is common to all of the[n: the reliance on models of the
domain that are largely i~ldependent from the task to be fulfilled. These nlod-
els allow the module to rely on a much deeper understatlding of the structural
characteristics of the cloniain than I)ossible with classical rule-based approaches,
facilitating model analysis ancl luodel reuse. The module achieves its function Ly
processing the moclel with a nloclule)s reasoning e~lgine, independent fro~n the
specific application. This processilig also relies on additional heuristics k[lowl-
edge that guicles the engine into Iilaki[lg inforlned clecisions during the search
process.

This paper discusses the knowledge acquisition process used for models and
heuristicsof the plannillgancl scheduling system (PS) of DS1. We started the
process with an approach to planning k[iowleclge representation [lO] that hacl
been demonstrateci in a rapid-prototyl)e effort [12]. JVitll DS1 we had to face
additional challenges due to having to develop PS in the context of t}lc clevelop-
xnent of the full flight software, to the additional coluplexity of the donlaill, to
the compressed schedule for develo~)![le[lt at~cl to tile risk-lllatiagclllellt require-
luents. Also, architectural solutions irlter~lal to RA had to be e~lhanced due both
to the incream in capabilities that were needed to co[ltrol a real spacecraft and
to the need to provicle sounder software engineering approaches. \tTe will describe
how the krlowledge accluisition ~)rocess was carried out and the strengths a~~d
weaknesses we found in our current a~~proacll.

Section 2 deals with the Relnote Agellt software architecture highlighting the
details of the planner and it’s plarl representatiorl. Section 3 deals !vith issues
in k~lowledge acquisition including referellces to the s~)iral developme~lt process,
model acquisition a~ld interfaces to external experts. Sectioll 4 deals with the
ope~l issues as a result of tile developlne[lt I)rocess itlcluding the Ileed for vali-
clatio~l and debuggillg tools. Fi[lally Sectioll 5 concludes with an outli~le of ttle
work ulldertake[l.

2 T h e R e m o t e Agent ancl Planncz- Architedures

<
Rcnwlt &nl >

Smad

n

Ground
Mission

Execulive S)stem
Manager

Mo& IL)
Planner/ Real-time software

and
Schedultr RecoqJig

L

L - - -

—Fey:-’

-:.. -:1 Ok ~~=
Plan FxperL$

Fig. 1. RA arc}litecture

The RA architecture cousists of four distiuct compoucuts (Figure 1), the Plan-
ner/Scheduler, the Mission Manager [1 1], the Smart Elecutive (EXEC) [14] and
the Mode ldentijication and Recovery (MIR) system [16, 17]

The execution of plans by the EXEC is achieved by iuteractiol} with a Mode
Identification syste~o aud a lower level real time xnonitoriug aud cout,rol compo-
nent. MIR provides the EXEC with a level of ahstractiou to reason about the
state of the various devices it commauds. l’he monitoring layer takes the raw
seusor data aud discretizes it to the level of abstraction neecied by the MIR.
~iually, the control and real-time system layer takes commauds from the exec-
utive and provides tlw actual control of the low level state of the spacecraft. It
is responsible for providiug the low level sensor data strealn to the xno~litors.
Details of the Relnote Agerlt architecture cau be fouud iu [12, 13].

%“’
Fig. 2. I’larlr~er/Sct~ccl[ller Architecture

The pla~lner/scheduler (1’S) geuerates a detailed plari of actiou from a haud-
ful of high-level goals, based on kllowledge of the sl)acecraft co~ltaiued i~l a do-
lnain model. The model describes the set of actiolls, l~oiv goals decolllpose iuto
actiom, the constrai]lts alllong actions, and resource utilizatioll by tile actions

‘1’lic platl[lillg cnlgille Searctles tllc sl)ace of ~msit)lc plarls fox one that satisfies the
co~lstraints and achieves the goals. The act ion defiuitiolls dctctlui[lc tile space
of pkuls. The constrairlts deternline which of these ~Jlaxls are legal, and heavily
prune the search s~jace. The heuristics guide tile search in orcler to iucrease the
number of plans that can be found within the tilne allocated for planning.

Figure 2 describes the overall view of the Remote Agent Plan[ler/Scheduler,
The Mission Manager (MM) contains the loILg ter~u mission plarl with goals for
tile entire Iuission. C;round operators call i~lteract with the Mhl to moclify the
plan by adding, relnoving or editing goals irk the mission plan. The Nlhl also
provides the EXEC with a~i irlterface to the E’lalincr. When the EXEC requests
a new plan, ML! selects a new set of goals frolu the mission profile, }jased on
internal way points. It combines this with the initial state provided by the F;XEC
a~ld generates a partial plalL for tt[e planner. JVhell the EXEC has completed
execution of this plan the cycle is completed when it sends a new request to the
MM for the Ilext planning horizon. For tile RA experi[ueut the plan horizon will
consist of two segments each three days long.

2.1 Knowledge Representat ion of the p]anner

The kuowledge representation of the planner is distributed amo~lg the cloruai~l
Iuoc]els, the planner heuristics, the mission profile and the plan experts. The
clomain models encode the behavioral aud o~)erational col]straints imposed ou
the spacecraft by the ruissio~l and the harclware. The heuristics guide the planner
search to decrease the co~uputatiotlal resources needed to fi(lcl a plan a~)d to
iucrease plan cluality. The mission profile encodes tile long term goals and mission
requirements as determined by the grouncl controllers ald luission designers, a~lcl
resides in the h’fission hlanagers temporal database. Finally the plan experts are
special-purpose software Iaodulcs, writte~l ancl mailltaimd by otlmr teallls, with
which the planner interacts to obtain fiuowledge that cannot be easily encoded
iu the plan ~noclel

Model Representation. The PS uses a hybrid platltli[~g/sclled(llillg represen-
tation that models continuous process on parallel timelitles to describe actions,
states and resource allocations. PS pro~’ides also for temporal and parametric
flexibility and uses planning experts.

Plal~s consist of several parallel t27T1elz7tc3, eac}l of which consists of a sequence
of toke7is. A timeliue clescribes the evolutio~l of a spacecraft state over time,
and the tokens clescribe those states. For example, consider o~le timeline that,
describes the main eugiue. If the pkul is to start ill stallclby, fire Llp the eugine,
and return to standby, the tilneli[le would have one token for each of those
processes. Each toketl has a start til~le, allcl ellcl tilne, ancl a cluration. E a c h
token can have zero or nlore arguments (e.g., tile thrust level at whictl to fire
the engine)

The plan model consists of defitlitio!ls for all the tiulelines, definitions for
all the toke[ls tlmt catl appear 0[1 tll[m tilllclilles, allcl a set of teul~)oral con-
straints that lnust hold among tile tolieils ill a valid l)laIl, Tile ~)la]l~ler tlm[lel is

dCSC~i~J[’d in a dor[lain dCSCI’i[)tk)rl laH~Lla~(! (~DL), aIld k IT[)N!S(![lkl aS patt

of t i le])]anrlU’S data baSC ah Calkl thC! p]and[J,

Telnporal constraints are specified in DDL by compatibilities, A conlpatibility
collsists of a master token and a boolean expression of tenlporal relations that
n~ust hold \JetWeell the master token and target tokens. An example is shown in
Figure 3.

(Define. Compatibility

;; compats on SEP_Thrusting
(SEP.Thrusting ?heading ?level ? d u r a t i o n)

:compatibility-spec
(AND
(equal (DELTA MULTIPLE (power)

(+ 2416 Used)))

(contained-by (Constant-Pointing ?heading))
(met.by (SEP_Standby))
(m e e t s (SEP-Standby))))

(Define-Compatibility
;; Transit ional Pointing
(Transltlonal_Pointlng ?from ?to ?legal)
:parameter-functiosn

(?_duration_ <- APE_Slew_Duration (?from ? t o ? _ s t a r t _ t i m e _))
(? - l e g a l - < - APE_Slew-Legality (?from ? t o ?_start-time_))

:compatibility_spec
(AND

(met--by (Constant-Pointing ?from))
(meets (cOnstant_pOintlng ?to))))

(Define_Compatibility

;; Constant Pointing
(COnstant-Pointing ? target)
:compatibility-spec
(AND

(m e t - b y (T.ansitlonal-Polntlng ● ?target LEGAL))
(meets (Constant-Pointing ?target * LEGAL))))

Fig.3. An exalnplcof a compatibility corlstraint ia the I’lanner moclel

The filst conlpatibility says that the master toke~l, SEP_THRUSTING (when
the Solar Electric Propulsion engine is ~)rocl[lci[lgttlrllst), nlust be inltncdiately
preceded and followed Ly astandby token, tcnlporall yco~ltaine flhy aconstant
l)ointirlg tolwl, ald requires 2416 Watts of power. Constant pointing inlplies that

ttlc s~mcecraft is i[l a steady state aillli[lg it’s ca~nera towards a fixed target in
space. Transitio~l poi[~titlgs refer to tllc slewillg activity required by the spacecraft
to Inove from OIIC poi~lting to tllc Itext. TIIe sta~ldby state of SEP in~plies that
the engine is not thrusting but has Ilot bef.’n cornpk!tely shut off. A plan fragnle:lt
basccl on these co[npatibilities is showtl in Figure 4,

Constant Transition Transition Constant

Po in t ing(A) Poinling(A,l?) Pointing(B,C) P o i n t i n g (C)
COnstant_Pointing(it)

I I I

—-—- - - -
l----
._&-_l

.

_ - 7 - - - – ’

. /’

met_by ‘ . _ _ _ _ - ’

meets meets

[
Sfi’P_Standby I SEP_Thrust(B,200) I SEP_Standby

\~ Jmeets

~------ - - -

I

- - - - —--- - - -

I Power (24J6W) I
--—. ---— - - --—- - - - - - — - .

Fig.4. I’lan Fragrnerlt

DDL provides a high level language for specifying the spacecraft require-
ments in ternls of beilavioral constraints (e.g., standby follows thrusting) a~lcl
operational constraints inlposed by mission policies.

Heur i s t i c s . llelltistics gllicle evelycllcJicc~)oitlto fthe~Jlaxltlerss earcll. Oneacll
iteration of the search, the planner chooses an unresolved compatibility con-
straint and a way to resolve it: by constraining an existing token to satisfy the
constraint, addillg a new toke~i that satisfies it, or wsurning that it will be sat-
isfied by sonle token in the next horizon. There are other decisions as well, such
as grounding uncler-constrai[led argunlellt values.

Method Connect
;; connect only, defer and add are disallowed.
m a s t e r { Transitional_Pointing; }
target { Constant-Pointing; 1

Fig.5. Cycle Avoidance Ileuristics

Forexalnple, thelleuristicin Figtlre 51)r('\'e11ts t)acktrackillg dlletocycli1lg.
The attitude tillleline alternates Wwcell co]wtant pointing tokens a~ld trallsi-

tiollal poirlti~lg toketui. ot}rc a constant ~)oilltillg tokt}ll i s a[l(lefl, i t has coln-
I)atibilitics that could a(ld trallsitimml ~mil~tillg tokcl)s, wllicll can ill turu a d d
constant pointing tokc[ls add in finitu[tl. Ttw last lwuristic b~eaks the cycle by
saying that a transitional pointing tokcll cau connect to an existing col}stant
poirlting token, but can never cddo~lc.

Missionprofi]e. Tllcgoals forttle e~ltire lllissioll arestorecl itlatlorl-boarcl file
called the Tnzssionprofilc, which isxna[lagwl t)ytllehlissioll Manager .T1le profile
captures nlissio noperatioll sknowlcdge, such as }v1lCII ttlecc)rrlltltltlicatiolls passes
are scheduled, how INUC1l fuel is allocated for each seglne[lt of the mission, w’hen
various r[~ission phases start al~rl stop, and so o~). The profile also serves as the
~)rir[lary itlterface w'itl~tt~e grotlI\cl col~trollers. The ground teartlcoxllrt~a~lclsthe
spacecraft at a high level by changi:~gor addiilg goals to t}~e profile.

Plan Experts. A large software project like tile I)S1, requires the contribution
of several teams with specialized ktlowledge. Planning Experts are progranls
developed ax]d maintained by other teams. They coordinate with the planner
but which are not strictly part of its domai[l represe~itation.

A prime example is the Attitucle control Platlnillg E;xpert (.4PE), wh ich
answers cloeries about whether a ,givell turn violates poi[ltitlg co;lstraints (i.e
while turning the spacecraft froltl ol)e target to the other will the camera be
exposed to some bright radiation source damaging it in the process ?) and how
loIIg the turn will take. Ilow’ violatioll constraints are calculated is colnpletely
opaque to the plat~ner. As a result, separatil]g the platl experts from the planning
model siulplifies the k[~owledge acquisition and software lnainte~lance process.
Quite often, clue to the s~)ecificity of these lnodules, the code is also reusable
across n~issiolls. For installce, Inuch of the code for attitude colwtraint violation
ill APE came from NASA/ESA’s Cassini lnissio~l [5].

There are two kiuds of ~~lan ex~)erts. I’lie first kind ans~vers questions about
collstraillts. APE is of this variety. TILe seco~ld kiucl of plal} ex~)ert generates goals
for ttle planner to achieve. These oil-board goal generators allow the spacecraft
to make autonomous clecisiolls, within certai~l l)ararneters, based OIL local infor-
ltlatio~l. Tile prime example on 11S1 is tllc o~l-tmard llavigator, ~vhich provides
goals oll trajectory related maneulws and goals for i[llages of nearby celestial
l)odies fro~ll which NAV call deter]l)ille tile s~)acecraft ~>ositioll.

Tile plamler asks the goal gcllerators for goals JVILC1] the ~)lanller is ready for
tllenl. The goal getlerators have no visibility illto tile plan, other than wilatever
information provided ifl the request. JVheIl ttle goals are returned, the ~)lallner
decides how they will be achieved ill tile plan, o r lvlletller they are achieved
at all. If the plan is ov(’r-collstrai~lt’{1, goals earl I)e rejected based on a global
~)rioritizatioll scllet[lc.

3 TIIC K n o w l e d g e A c q u i s i t i o n P r o c e s s

Tradit ional ly flight software for a s~m.ecraft co[lsists o[lly of 10IV level device
drivers, attitucle Co[ltrol systcvll and si[n~)le scquwlcc cxecutioll capabilities.

Colntnalding cfotle from g r o u n d allows t}ie o~xxational and mission coll-
straints to be clesigtled atld i][lpletlwntcd at a later titnc, sonletilnes even a f t e r
lau~lch. With on-board alltonolny, tile desig[l process ~nust take a more coln-
prehensive view to the full mission life cycle including from tllc vc7y kgi717Li7Lg

ttle rnocles, operations and exr)ected behaviors of tile s~~acecraft in tile doltlaitl
xnoclels, To accomplish this we used a Spiral Ilevelopn~ent model.

Irl the followirlg sectiolls we discuss the Icllowledgc acquisitiol~ process and

Inethodology for the planner and t~le reslllting proble~lls and issues they raisecl.

3.1 The Spiral Development Process

In a Spiral development [1] for each clevelopr~lent cycle, management identifies
subsystem and moclules that nmst be developed, tested, and illtegratecl. hlearl-
while, processes and standards are further refined. At the encl of each develop-
ment cycle, project teams meet to discuss the obstacles they e~)countered and the
lessons they learned. This creates a systenl for tracking problelns and resolutions.

For DS1, this allowed us to work on basic fu~lctiollalities and understand the
issues involved before tackling more colllplex fullctionalities (see [8]). At the
beginning of each sl)iral, the rnissiolL engineers created a baseline scenario that
would exercise the new functionality for that spiral while still requiring the old
functionality. The hardware Inailagemellt tealn (FI\YMT) then arrangecl several
days of fulowledge acquisitio!l ~tleeti[~gs ~vith tile harclviare clevelopers, ~vho would
detail the software requirelnellts for their hardware to \vork correctly.

Each of the nlodeliug and software clevelop~[)ellt teams serlt representatives
to these lneetings. Tile hardware developers ~)rese~lted the baseli~le bella~’ior for
the upcomitlg spiral, al\d the moc!elers asked questiolls to elicit further details.
Since eacil COIIlpOlleIlt Of the R.A IIIOdCk tile hal~lVale at a C~ifff21Wlt hd, ha\’iIIg
representatives from each teanl was particularly helpful it] identifying i[iteractio~l
issues across the different levels.

The DS1 Spiral releases were desi.qlated RI through R3. To give tile reader
the scope of developxnellt that took ~)lace, \vc sllo~v the evolution of the planner’
l~lodel sizes for each revision in tables 1, 2 and 3.

Fro~n the I’S ~Jers~)ective each revision ill tile s~)iral develo~)~ne[lt IIlodel itl-
volved successively sophisticated collstrai[lt ~llodcli~lg of the spacecraft. III the
first revision the tl~odel oIlly dealt with simple turl~s and ~)icture taking for
navigatioli illlagcs; mote complex issues such as powm, tller~nal modeling !vere
ig[iored. III the next revision the [nodel included the Illodelillg the SEP engines
and obtaining Illore detailed trajectory i[lforlllat ion fro~tl the [Navigation ex~)ert.
Tl~e third s~~iral release added power lllal~agellit’l)t, a(lvanced tur]ls, an(l co[llct
fly-by relate(l activities.

Suhsystet[l 1{ 1 1{2 1{3

Mission events o 1 3
I’ower o 0 2
Iori 1’ropulsio[l 1 5 5

Attitucle con t ro l 3 4 4

CYorli[[lurlicatiO[is o 1 2
MICAS 1 1 6
tkacou ex~]cri(llerlt o 0 2

RCS system 1 1 3
Navigation 3 3 ‘1
l’larlrler/scllecl ~ller 1 1 1
‘1’otal 10 17 32

Table 1. Modification of tirnelines in the nlodr4 over t}le spiral Cfeve[opment releases

Table

Subsysteol
— .

Rl R2 R3
‘rot Add Mod I)CI ‘lbt Add hlod I)el q’ot

hlission events o 1 1 5 6
Power o 0 3 3
Ion propulsion 1 11 1 12 1 3 13
Attitude control 4 4 8 6 2 1 14
Coxllrllllllicatiorls o 3 3 2 2 5
MICAS 3 5 8 14 22
Beacon experiroent o 0 4 4
RC;S system 1 1 4 1 5
Navigation 6 2 6 3 9
I’larll,er/sct] cduler 2 2 2
Total

.
17 41 69

2. Modifications of token ty~)es over the s[,iral dcveloprneut releases

3.2 Model Acquisi t ion

Model acquisition in each cycle would start with the cogllizant system engineer
laying the baseline functionality to be covered, layered orl to~) of rlcsigtls of
subsystems already inlple~nented. ‘1’he tnodeler for the plannilig team would
then be required to list the llew functio~la]ity required aIId changes to the old,
These would be put into a Problcrn .! Wtement givilIg a broad outlil)e of tasks the
planner rvould be needed to do for ttle current cycle, alorlg with specifyirlg arly
additional fortllal it~terfaces ill the form of illter-prcrcess Col]lrll(lllicatioll messages
(see Sectio~l 3.4). Tea~ns with interfaces witt, tile I~larllwr (es~~ecially tl~e EXE(3)
would comment al~d p~oposc clesigl~ c})anges alld ar~y additional requirernellts,
After a few iteratiorls of this ~jrocess, tllc IIlodeler would update the TokcT~
Dzct207m7y. T}Ie token dictiollary details tile syntax and sernarltics of each tokerl

‘Sllhsyskr[l

,1’ower (1 o 0
1011 I’rOpulsioIl 3 11 14
Attitude control 2 11 16
(~O1lllllllllicat ions o 3 7
MICAS 3 3 20
IIcacon expcril[)cnt o 0 4
RCS Systr’tll o 0 2
Navigation 4 3 7
I’larlrler/sctledlller 2 2 2
‘1’otal 16 36 76—

Table 3. Moclificatioas of colllpatibilities in the model over releases

type on all the tinlelines and fornm the prilnaty docunlent for all negotiated
informal interfaces with the EX13C.

This would inlply changes to the existi[lg tokens along with tinlelille and
token additions as necessary. The core task of the model acquisition process
would then be colnplete a~ld the nlocleler would then Inove towards inlplementing
the design changes. As mentioned earlier (see Section 2.1), this would pritnarily
involve changes to the dolnaiu n~odel, IJlallller heuristics and the n}ission plan.

In each revision of the Spiral clevelopnlent, approximately eight, weeks were
neecled for knowledge capture and another eight weeks for nlodel clevelopnlent
and tuning of the planner scarcll.

Issues in DomainMocleling. Inmodelingf ortlleI)Sl rllissio~l, ~t’ecliscovetecl
that a relatively large nuItitJex of modeling tasks were easy to clo, given the
syntax and se~nanticsof DDI,. In acouple of cases Jvehacl to i~ltroduce auxiliary
tilnelines to support the planner’s reasoning process.

For instanceit wasllecessary toschedule ttlecorrectanlount of SEP thrust
within a planning horizon. Simply put, this would rccluire colnputing the clu-
ration of each SEP thrust toke[l a~id perforlning a sunllnation over the pla~l-
Iling horizon. To do so however, a so~neyvhat circular approach was needed by
defining a Ilekv tinleli~le which woukl use variable codesig!lation and propagate
acculnulated thrust values based on tet[lporal durations of the SEP thrust to-
kel~s;solllet}lillgllot altogether intuitive. Figure 6illustrates tllissituatioll with
tile Max Thrust duratio~l specifyitlg tile thrust cluration needed in the horizon;
SEP thrust toke~ls actually ~CTf07’TlL27L/J the tht’ustillg action and Accumulated
thrust tokens show’ing a running cou?lt of the thrust.

As luentiolled earlier, with each iteration of tile developnlent cycle tile planner
n~oclels were n~ade consistently ~l~ore realistic. Iillo\vledge acquisition fronl each
s~)iral cycle effectively e[lded u1) affecting ttlc ~Jlallller’s rlolnain Inodel a[ld it’s
heuristics. \Vhile syntactic IIlodificatiotls and its se[llalltic irlter~)retatioll Jvere

Accumulated Accumulated Accumulated

Thrusl(0,40) Thrus((4Ll,80) Thrus[(80, 100)

Fig. 6. A plan fragrilerlt i[il~,lelllentirtg thrust ar-cu[llulation within a IJlan horizon

the priruary drivers of model development (eslwcially if interface requirenlents
at the token level were to be IIegotiated with the 13XEC (see Section 3.4)) we
discovered that a n~ajor chunk of developnlcllt tinw was alignitlg the heuristics
with the nlodel changes so that planner convergence w’as possible.

Heuristics. Because of the tight coupling of tllc doulain nlodel to the heuris-
tics, changes to the model ahnost always require corresponding changes to the
heuristics. This nlakes it difficult to iutrocluce increnleutal chatges to the n~odel.
Nornlally, a fan~ily of titneliues corresponding to a new clevice or capability can
be added with ~ninirnal impact on other tinleliues. Most of the constrairlts are
anlo~lg the tirnelines in the fanlily, with a handful of constraints to external re-
sources such as power or spacecraft attitude. However, the new tiuleliues change
the optitnal search strategy, and this requires tile heuristics to be re-tuued.

3 . 3 Unnlodeled Ac t iv i t i e s

Sonietinles the ground controllers want to execute nlaneuvers that do llot obey
the flight rules, and are therefore not nlodeled the ~Jlanner. For exanlple, they
n~ay want to execute a high-speed turl~ in order to jar loose a stuck solar pane].
Tile nloclel nlust provide a way for the ground controllers to execute contitlgency
nlaneu~’ers such as this without uploading a xlew nloclel. Changing the xnodel
nlaybe fine for perulaneut patches, but the tilne and cost needed to develop and
test the patch nlakes thetu inlpractical for olle-ti~lle cvnergency nlaneuvers.

In support of this requireuleut the nlodel provides a special activity to-
ken that can stand in for any activity the ground wants to execute but is not
other~vise supported by the planning nlodel. Tile ground co[ltrollers insert the
token ~rhere they want it in the Iuissiou profile. It can be sc]leduled for a spe-
cific tinle, or scheduled relative to other events. The activities perforlued by the
tokell are specified in a file of time-tagged low-level coln~l~ands that the EXEC
executes at the begilllling of the tokerl.

Since the actions executed in the sl)ecial acti~’ity token are Ilot lnodeled by
tlw plal\ller. it is l)ossible that they could col~fiict lvith planned activities. For
txullple, the plau could be tryiug to Ilo]d ttle slmcecraft still ill order to take au
i]llage while the special activity token is executi[)g a liigll sl)eed turn. To avoid

sucli c o n f l i c t s , collstraitLts can lw s~wcifie{l }Jetwccvl tile s~)ecial acti~’ity toke[l
w)(I other t,okells ill tllc plarl. In this case, attitude depcudent activities would
be disallowed w’llile the s~wcial activity toiwu \vas active. These constraints can
be specified iIL the Illissio!) profile.

3 . 4 It~terfaces

The interfaces betwccll the l)lall[ler and other parts of the flight software imp-
act the kuowledge accluisitioll alld represe[ltatio~l, The planner has two main

interfaces: interfaces with plan czpcrts, and interfaces with the Smart Executive
compoue[lt of the RA.

Plan Expert Interfaces. Negotiating tile pla~l expert interfaces was alnong
the ewiest of tile lalowledgc accluisitio]l tasks. This is largely due to the opaque-
ness of the plau experts to the plauuer aud vice versa. The bulk of the knowledge
accluisition wasin the very first Iueeting, where the focus wasuudcrstandinghow
the plan expert worked and explairliug planlier concepts to the plan expert de-
velopers. In the case of APE, the plannirlg team rlecdecl to uuclerstancl how to
specify a turn, and what iuforrnation was neccled for APF, to corupute a turn,
The details of how turns are computed were irrelevant.

Once this initial knowledge acquisition was co:npleted, subsecluent interface
~legotiatio~ls were co~ll~)leted i~laxl~atter ofl~o~lrs, ~~sllally by~>t~o~le orexl~ail. The
interfaces were forlually definecl as C structures that specified the information
passing from the plauuer to the plan expert and back. These were captured
iu an interface coutrol documctlt, and in all executable iuterface specification
language.

II) solne cases, the I)lallner used assuulptiorls about the itlner ~vorkings of
tile plan expert to im~)rove efficicllcy. For example, the legality ancl duratioll
of a turll changes slowly aud contitluously over time. This allows a turx~ to be
moved a couple hours ahead or back ill the plan as needed without affcctitlg its
duration or legality. T}IC planner model a~ld heuristics exploited this knowledge
to simplify the design and speed u1) tlIe search. Assumptions of this sort were
rare, and captured explicitly in the interface coutrol documents.

EXEC Interfaces. The interfaces between theplauuer and tile Smart 13xecu-
tivc (EXF,C) arc emboclied by tl}e till~elil~c and tokel) definitiox]s included in the
planner’s model.

In order for tile EXEC to execute ~)lalls, it ~llust k[iow ~vllat toke~ls call appear
in the plan a[ld how to ex~)aud those tokells itlto dctai]ed colulllallds to tile real-
titne flight software. This creates a very St[-ollg rc)ul)li[lg between EXEC and
the })launer. All of the tiluelilles, tokells, aud their sellla]ltics tvere negotiated at
tile beginni~lg, of each sI)iral before ally irtl~)lel[~elltati~>[l took place, However, if
the need for another toketl ~v~s discovered during developll~cut, or SOIUC tokel~
rlceded another argutnrmt, or tile serllautics ~vere ~vrollg. then tile EXEC and PS
had to cilal)ge their i~lll)leIllelltatit)lls accor(lillgly. rk’ca~lse tile t(~kells are S,UCII a

I[lil,jor l)art of tile I[lo(l(:l i[lll)lc’[[lcrltatic)ll, clIaIqjcs of this sort crcc~lrrcxl ill every
dcvcloprlletlt sl)iral despite strong efforts to ~)reve[lt tl)c~ll.

Several solutions to this interface issue wera consi(lcrwl for DS1. One success-
ful approach was to use information hidi~~g to create private token argunlcnts.
Additional argu[llents arc often needed to Ilold values derived froln other argu-
ll~ents, or to propagate values fronl other tokens. Tile need for these arguments
oftell goes unnoticed until develol)lncnt begins it] carllc~st. Private argulllents are
secll by tile platlner, but are do not appeal ill tllc plan. This allowed ruodelers
to aclcf argunlex~ts for bookkeepil~g and propagatio[l purposes without impacting
the EXEC. This capability was introduced at the end of the R2 .sI)iral, ancl used
with great success in R3.

Interface Management Process . ~oe~lsllredisco~lllects wcrc kept toan)in-
imunl, another requirement ackled by the project during the design phase of
each revision, was the clevelopment of Protde7rl Statemmts, with details of each
modules’ clesign, interfaces ancl assumptions for that revision cycle. The planller
in aclditioll also had a token dictionary with tile negotiated token level inter-
faces with the EXEC. With the EX13C with which the planrler representation
was tightly couplecl, any agrecn~el~ts and assutnptions ill the pla~incr’s nlodel
were accurately document and easily accessible via a world \vide web (JVLYW)
itltcrface to the dictionary and disconnects cau.gilt early on. III order to avoid
disconnect swith respect to the hardware spccificationsj especially asharclware
delivery quantified thel)crforma~lce, tlle}I\$TNIT wastllccelltral point ofcolltact
for clissenlinati[lg information.

The project also n~ade sure that after the il~terface parties al~cl the design
ldlase for each cycle, but before the various teatlls startecl actually developing
code, a co7wept revicwwould take ~)lacc. Each tcanl woulcl publish a short docu-
ment detailing their design choices and the assun~ptions n~ade, especially towards
ge~lerating thescenario inthecurrwnt cyclca[ld theinterface requirernellts. Any
disconnects found wrolllcl recltlire tlle~)rojcct to fo]low through with thetcamin
question to ensure the new clcsign actually covered tlic complete scenario.

3 .5 D i s t r i bu t ed Deve lopmen t

Because of geographically clistributed teanw, desigll clocu[nents and interface
agree~llents \vere exchanged ~Jrinlarily via a W\f’tV i~ltcrface with auto-posting
features as mentioned in [2]. ‘1’he use of the Internet was decisive in successfully
collaborating over re:note sites especially }vlie~l exctlallgitlg device level ktlowl-
edge, For i[lstance, the EI\VLIT would be al)le to ~mt po~ver budget allocatio~ls
over different devices whici] could be abstracted, lmrsed ad built into a table for
lookup cluritlg moclel gyleration time. This Ivould emwre that the ~)larlncr mod-
els were consistent in their power budgets wfittl those of the syste[ll engilwcring
and actually viable for generating robust plal~s.

.Additiollally, for short design and concc~)t reviews, a “llleet-nlc” tclq)llc)nic
s~st~~n ~vas in l)laCc w i t h Peor)lc callillg into a cctitra] Illl[llt)er ~vllilc acccssitlg

t,llc welJ arltl viewirlg the sallle (locu~llellt sir[l(llt:tllc~o~lsly. T]lis greatly llelpcd ill
cutting dow’rI tile time, effort aud cxpctlsc of cwtultlutiug to a central site.

Note also that a rcvisiou co~ltrol systelti [3] wws iu l)lacc for all the source
code.

4 Open Issues

The DS1 project r)rescllted several challcvlges ill knowledge acquisition, repre-
sentat ion, aud valiclat ion. The DS 1 plauuer proved capable of addressing these
issues, at least to the extetlt needed to satisfy the requitelneuts of DS1. However,
there are a uumber of issues that must be resolved before this technology can be
used on a risk-iutoleraut scieuce ulissiou by spacecraft en.gi~lcers with xniuinlal
support from the plau~ler clevelopluent tearu.

4.1 Acquiring Heuristics is Difficult

Good heuristics are neecled to ruake the pla~l~ler search cornputationally tractable.
lIeuristics tell the plauner what decisions are most likely to be best at each choice
point in the plauner search algorithlu, thereby reducing tlie seawh. Developing a
good set of heuristics for the 1)S1 plauner is curteutly very diflicult, both because
it requires au intiulate kuowleclge of how the plauuer search algorithtn i[ltetacts
with the model, ancl because the planner requires exceptionally good heuristics
to achieve computational tractability. ‘1’he DSI rooclel developers hacl this expe-
rience and so were able to clevelop goocl heuristics, hut these obstacles nlust be
overcome before spacecraft engineels cau be expected tcj clevclo~) heuristics on
their own.

One solutiou is to provide tools that derive heuristics auto~natically. Such
tools have beeu discussed irl the tuachine learlliug aucl planuiug literature. Two
of the more promisiug approaches are to clerive heuristics automatically through
a static analysis of the plan nlodel [4] or to learn them tJy watchiug the behavior
of the planuer over several runs orl a giveu model [9]. Uufortuuately, the DS1
planner requires exceptionally goocl heuristics to achieve tractability, and these
xuetbocls generally do not produce heuristics of that caliber. The sensitivity of the
plauller to the heuristic must be reduced IJefore autolnatic heuristic acquisitioll
call be feasible.

4 .2 Development and Debugging Tools are Needed

Mocleliug could be nlade considerably easier with e~’ell a few si[nple tools. Al-
though there was illsufficic~nt time to develo~) t}leln for 1>S1, our exl)ericnce with
developirlg a[ld debuggiug ~Iuxlels suggested a ~lutlll)cr of desirable features. De-
velo~)irlg tools along these lilws is one of out Ilear tcrlll goals.

Plan Visualization Tools. One problull with the cu[-rent systeln is that it is
very difficult to understand what the pla[lllcr is doi[ig, des~)ite copious output,
This makes it diffkwlt to isolate the decisiot]s that lead to bugs in the plan, or
prevent the planner from finding any plan at all. A visualizatiorl tool ~vould help
n~odelers to track the plallllers behavior, as well as [rlaking it easier for new users
to understand how the planner works.

Deactivat ing Timelines. W’hen clebuggillg, the mocleler often suspects the
bug is witbill a s[nall family of timelil)es. But as the ~nodel gets xnore conlplex,
it becotnes clitlicult to focus on the behavior of those tilnelines. A sinlple way to
aclclress this problem is to clisable irrelevatlt tixnelines. Tile planner ignores the
tin]elines and all cotnpatibilities associated with thenl. This facility is rather easy
to acid, tllougb there was insufficient time to implement given the compressed
DS1 schedule.

Model Visualization Tools. As the model gets larger, it bccornes harcler to
keep iu mind all the constraints among the parts of the Inodel. A nlodel visu-
alization tool that displayec] a graphic view of the model (or a subset) and the
constraints would help the modeler view this infornlatioll as a whole,

4.3 Large Scale Validation of the Renlote Agent Planner

Before any spacecraft is launched, its flight software must be throughly tested
ancl validated. The same is true for autonomous flight software. I1owever, the
valiciation mcthocls usecl for traditional software are nc)t gexmrally ap~)licable to
autollonlous software. New methods must be developed,

T}le planner can generate several thousancl clifferetlt plans, depending 011 the

nlission goats, the spacecraft state, goals .generatecl oil-board by plan experts and
variations on the nlodel parameters. To fully valiclate the planner, one must be
sure that it will generate a correct plan for every one of those possible situations,
and that the plan can be executed correctly by t}le EXEC.

An alternative to generatil]g allcl testillg several thousand plans is to use
forn~al n~ethods to verify the n~odels ancl to verify t}lat the planner proc]uces
plans that are consistent with the lnoclel. One ar)proacb is to capture the ftight
rules ancl other recluireuwx~ts fortnally as constrail~ts. ancl ensure tilat the rnoclel
is consistet]t with all of the~n, atlcl that no constraints have been Inissed. A related
possibility is to convert tile nloclels into a i~tllllaxi-reaclal)le forln al~d have then)
approved by cognizant system engi~leerx (dorllaili experts).

Tools for autol~latically generatilig ancl validating plans can greatly reduce
this cost. One of the tools we considered for 1)S1 I)ut clid ~lot nave time to i[[l-
plenle~lt was a collstrai[lt checker that tested !vt~etller tl~e plan satisfied certain
correctness co~wtraillts. These ilicludc tlw collstraitlts ill the Inoclcl, plus addi-
tional constraints derived frolll flight rules a~ld otllt’r o~wratioual co[lstraiuts.

5 Conclusion

DS1 will be the first deep-space sl)acecraft u[lder autonouwus control. The conl-
l)lcxity of this clrm~aill raised a nunlber of important knowledge acquisition ancl
representation) issues, some of whicli wc were able to address ancl sonle of which
renlain open. Issues were also raised by the fast-l)aced spiral developnlent cy-
cle, the etnbedding of the planner within the autonoruy architecture, and the
risk-l~la~lage~llerlt requirements of the space flight donlaiu.

These issues are not uniclue to DS1, alld are likely to occur on other projects
that require autononlous control of a complex cnvirollrnetlt. As the role of au-
tonomy increases in space exploration and other areas, so will the itnportance of
finding good solutions to these issues.

6 Acknowledgments

!fhis paper describes work partially perfornlcd at the Jet Propulsion Laboratory,
California Institute of Technology, under contract from the National Aeronautics
and Space Adnlinistration.

This work WOUIC1 riot have been possible without the extraordinary effort and
dedication of the rest of the Remote Agetlt Planning Tean~: Steve Chien, Charles
Fry, Sunil Mohan, Paul Morris, C;regg Rahidcau, ancl Davicl Yan.

References

1. Barry Eloehrn. A Spiral hfodcl of Software Development and E;nhancernent. Com-
puter, pages 61-72, hfay 1988,

2. Nlichacl C;on, ptou, IIelcrL S t e w a r t , Villod Ilaya, M a r t h a I)c>l Alto, Ilob Kanef-
sky, and JaSOI\ Vincent. Electronic collaboration for the New’ Ivlilleniunl:
Internet-based ‘1’ooIs and l’echniques for Sharing Information. In ht@://zc-
u,ulw. arc, nasa. gov/ac/~lrojects/T~ 7tLp-doc/rl17ip- doc-pres. pdj, 1997,

3. Per C;edcrclvist et. al. Concurrent Versions SysteII1. In
http://unuul. loria.!r/ rtlolli/cvs-index. html, 1996.

4. C)ren Ettzioni, Acquiring Search Control Knowledge via Static Analysis, Artzfictal
Intelligence t 62, 1993.

5. C;. M.llrown, 1). Bernard, and R. Ra.srI1usseri. Attitude and Articulation C;ontrol for
the Chssini Spacecraft. a fault tolerance overview. In Iith AIAA/IEEE Digital
Avionics Conference, 1995.

6. Barbara IIayes-Roth. An Architecture for Adaptive Intelligent Systenls. Arttjicird
[intelligence, 72, 1995.

7’. I EI<;E. f’r’ocet’dings of the IEEE A e,ospace Con/e re7Lce, Snow nl&ss, CO, 1997.
8. S a n f o r d Krasner ancl I)ouglas 1~. Ilernard. Integrating Autononly Technologies

into an P;nlbeclded Spacecraft Systen- l~light Software System Itnginrwring for
New Millenniu[[l. In f’roceedings of the lh’f~f] Aerospace Conference [i’].

9. Steven klinton. Automatically cc,nfi.guring constraint satisfaction programs: A case
study. L’07Mhn171h-, 1(1), 1996.

10. Nicola hluscettola. 11 S1’S: Integrating planning and scheduling 1[) hlark Fox a!)d
Lloote Zwehcn, eclitors, Intelltge,it Scheddlnfg. N[organ Kirufrtlann, 1!)94.

11. Nicola Musccttola, Ilcn Sn~ith, Charles Fry, Steve Chirn, Karma Rajan, Gregg
Rabicfeau, and [)avid Yan. On-Boarcl I’lanning for New Millennium L)eep Space
One Autouorny. In Proceedings OJ the Iflh’E Aerospace Conference [7].

12. Barney Pen, L)ouglas E. Bernard, Steve A. Chien, Etrann ~~at, Nicola Muscet-
tola, P. Pandurang Nayak, Michael L). Wagner, and Ilrian C. Wiliianls. A Remote
Agent Prototype for Spacecraft Autonomy. In Proceedings OJ the SPIE Conference
on Optical Science, Engineering, and fnstrun~entation, 1996.

13. Barney Pen, I)ouglas E. Bernard, Steve A. Chien, Erann C;at, Nicola Muscettola,
P. Pandurang Nayak, Michael 1). Wagner, and Brian (3. M’illiarns. An Autonomous
Spacecraft Agent Prototype. In f+oceedings of the First lnternationcd Conference
on AutonontorLs Agents. ACM Press, 1997.

14. Barney Pen, J3rann Gat, Ron Keesing, Nicola Muscettola, and Ben Smith. Plan
Execution for Autonomous Spacecraft. In Louise Pry or, editor, I%ocs. 0$ the AA A 1
Fall symposium 071 Plan Ez-ecution. AAAI l’ress, 1996,

15. M. Tan~be, W. Lewis Johnson, R. M. Jones, F. Koss, J. E. Laird, Paul S. Rosen-
bloorn, and K. Schwarnb. Intelligent Agents for Interactive Simulation f3nviron-
rnents. AI Magazine, 16(1):15-39, Spring 1995.

16. Brian (3. Williams and P. Pandurang Nayak. A model-based approach to reactive
self-configuring systems. In f’roes. oj AA AI-96, pages 971-978, Cambridge, Mass.,
1996. AAAI Press.

17. Brian C. Williams and P. I’andurang Nayak. Irnluobile Rot,ots, AI in the New
Millennium. AI A4agazine, Fall, 1996.

‘1’his article wa.~ processed using the l$’I~tX Illacro package with I, I,NC’S style

